Sie sind nicht angemeldet.

  • Anmelden

1

22.08.2007, 18:41

Mathe - Hilfe

Steh irgendwie grad aufm Schlauch, komm nicht auf die Lösung ?(

"Bestimmen Sie den Abstand des Punktes P(5|15|9) von der Ebene E durch die Punkte A(2|2|0), B(-2|2|6), C(3|2|5)."

Wäre nett, wenn mir jmd den Lösungsweg erklären könnte :)

2

22.08.2007, 19:00

sagt dir hessesche normalform etwas?

machst ma aus den drei punkten eine ebene. AB x AC (x=vektorprodukt) ergibt den normalvektor, welcher die ebene mit einem punkt zb A vollständig beschreibt.

dann musst die ebenengleichung irgendwie normieren. dann kannst den punkt P einsetzten und herauskommt der Abstand. ich kann noch genauer nachschauen wies geht. oder reicht dir das schon?

Dieser Beitrag wurde bereits 1 mal editiert, zuletzt von »Imp_eleven« (22.08.2007, 19:01)


3

22.08.2007, 19:09

Doch kenn ich..

(-4 0 6) X (1 0 5) = (0*5 - 6*0, -4*5 - 6*1, -4*0 - 1*0) = (0 -26 0) = Normalvektor.

Normalenform = [x-(2 2 0)]*(0 -26 0)=0

Und dann?

4

22.08.2007, 19:22

gibt (0,26,0) hast da fehler drin in der mitte.

die ebenengleichung wär dann 26y-d=0
dann setzt ma A ein und erhälst für d irgendwas. dann teilst die gleichung durch 26.

dann solltest y=2 erhalten
für den abstand kannst dann einfach die y werte subtrahieren

edit: sollte dann 13 ergeben

hessesche normalform brauchst hier nicht zwingend da der abstand so einfach ist. aber die wär y-2=abstand für y musst jetzt noch den wert von P einsetzten . also 15-2=> 13

Dieser Beitrag wurde bereits 1 mal editiert, zuletzt von »Imp_eleven« (22.08.2007, 19:25)


5

22.08.2007, 19:26

Zitat

Original von Imp_eleven
gibt (0,26,0) hast da fehler drin in der mitte.


Wieso? -4*5 - 6*1 = -26 :P

Zitat


die ebenengleichung wär dann 26y-d=0
dann setzt ma A ein und erhälst für d irgendwas. dann teilst die gleichung durch 26.

dann solltest y=2 erhalten
für den abstand kannst dann einfach die y werte subtrahieren


Was ist dieses d? Kennt nur die Form x+y+z= 0, sprich 26y=0.

Und wo soll ich da A einsetzen^^

6

22.08.2007, 19:29

es ist aber 6*1-(-4)*5

naja ne falls die ebene nicht durch den ursprung geht hat sie die form ax+by+cz+d=0 wobei (a,b,c) der normalvektor ist. und d der abstand zum ursprung(falls der normalvektor die länge 1 hat)

A setzt jetzt bei 26y-d=0 ein. also du setzt nur den y wert ein. dann bekommst das d heraus.

7

22.08.2007, 19:33

Aso, stimmt, hast recht :) Danke

8

22.08.2007, 19:47

Moment, du hast geschrieben: x+y+z+d= 0, aber hinterher schreibst du 26y-d=0..wieso auf einmal "-d"?

OLV_teh_pwnage_

Fortgeschrittener

Beiträge: 302

Wohnort: Geislingen/steige

  • Nachricht senden

9

22.08.2007, 20:15

du mussst zwischen der hessischen normalenform (Normierte normalenform = normalenform * 1/Betrag vom Normalenvektor)
1/|n0|*((X -p) x n0) = 0

und der abstandsformel
(A(das ist der Punkt)-p)xn0=d(das ist der abstand) unterscheiden

X=beliebiger vektor der auf punkt auf ebene zeigt
p=Stützvektor
n0 = Normalenvektor